R/get_stream_summary.R
get_stream_summary.Rdget_stream_summary provides a summary of monitoring coverage and bycatch by stream
get_stream_summary(fitted_model, alpha = 0.05)data frame with summary statistics for each monitoring stream
# \donttest{
d <- data.frame(
Year = 2002:2014,
Takes_obs = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0),
Sets_obs = c(200, 180, 150, 350, 250, 270, 180, 150, 400, 350, 280, 180, 250),
Takes_em = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),
Sets_em = c(150, 120, 140, 250, 180, 190, 120, 100, 300, 270, 200, 130, 190),
Sets_total = c(1000, 950, 900, 1800, 1200, 1300, 900, 750, 2000, 1800, 1400, 950, 1300)
)
fit <- fit_bycatch(Takes_obs ~ 1,
data = d, time = "Year",
effort = "Sets_obs",
takes_em = "Takes_em",
effort_em = "Sets_em",
effort_total = "Sets_total",
family = "poisson"
)
#> Observer stream: 13 observations
#> Total takes: 3
#> Total effort: 3190
#> EM stream: 13 observations
#> Total takes: 1
#> Total effort: 2340
#> Total fishery effort: 16250
#> Observed effort: 5530
#> Unobserved effort: 10720
#>
#> SAMPLING FOR MODEL 'bycatch' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 5e-06 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.004 seconds (Warm-up)
#> Chain 1: 0.004 seconds (Sampling)
#> Chain 1: 0.008 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'bycatch' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 2e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 2: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 2: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 2: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 2: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 2: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 2: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 2: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 2: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 2: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 2: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 2: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.004 seconds (Warm-up)
#> Chain 2: 0.004 seconds (Sampling)
#> Chain 2: 0.008 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'bycatch' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 1e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.01 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 3: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 3: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 3: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 3: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 3: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 3: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 3: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 3: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 3: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 3: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 3: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.004 seconds (Warm-up)
#> Chain 3: 0.004 seconds (Sampling)
#> Chain 3: 0.008 seconds (Total)
#> Chain 3:
get_stream_summary(fit)
#> stream effort observed_takes estimated_mean estimated_low
#> 1 Observer 3190 3 3.000 NA
#> 2 EM 2340 1 1.000 NA
#> 3 Pooled Observed 5530 4 4.000 NA
#> 4 Unobserved 10720 NA 8.686 1
#> 5 Total Fishery 16250 NA 12.686 5
#> estimated_high coverage_pct
#> 1 NA 19.6
#> 2 NA 14.4
#> 3 NA 34.0
#> 4 22 66.0
#> 5 26 100.0
# }