R/get_fitted.R
get_fitted.Rd
get_fitted returns df of observed bycatch estimates (lambda of Poisson), accounting for effort but not accounting for observer coverage
get_fitted(fitted_model, alpha = 0.05)
Data and fitted model returned from fit_bycatch(). If a hurdle model, then only then the plot returns the total bycatch rate (including zero and non-zero components).
The alpha level for the credible interval, defaults to 0.05
plot called from ggplot
# \donttest{
d <- data.frame(
"Year" = 2002:2014,
"Takes" = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0),
"expansionRate" = c(24, 22, 14, 32, 28, 25, 30, 7, 26, 21, 22, 23, 27),
"Sets" = c(391, 340, 330, 660, 470, 500, 330, 287, 756, 673, 532, 351, 486)
)
fit <- fit_bycatch(Takes ~ 1,
data = d, time = "Year", effort = "Sets",
family = "poisson", time_varying = FALSE
)
#>
#> SAMPLING FOR MODEL 'bycatch' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 9e-06 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.016 seconds (Warm-up)
#> Chain 1: 0.016 seconds (Sampling)
#> Chain 1: 0.032 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'bycatch' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 7e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 2: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 2: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 2: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 2: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 2: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 2: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 2: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 2: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 2: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 2: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 2: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.013 seconds (Warm-up)
#> Chain 2: 0.013 seconds (Sampling)
#> Chain 2: 0.026 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'bycatch' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 7e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 3: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 3: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 3: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 3: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 3: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 3: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 3: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 3: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 3: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 3: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 3: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.014 seconds (Warm-up)
#> Chain 3: 0.012 seconds (Sampling)
#> Chain 3: 0.026 seconds (Total)
#> Chain 3:
get_fitted(fit)
#> time mean low high obs
#> 1 2002 0.2946184 0.09388089 0.5973596 0
#> 2 2003 0.2561899 0.08163556 0.5194431 0
#> 3 2004 0.2486549 0.07923451 0.5041654 0
#> 4 2005 0.4973098 0.15846902 1.0083308 0
#> 5 2006 0.3541449 0.11284915 0.7180537 0
#> 6 2007 0.3767499 0.12005229 0.7638869 0
#> 7 2008 0.2486549 0.07923451 0.5041654 0
#> 8 2009 0.2162544 0.06891001 0.4384711 0
#> 9 2010 0.5696458 0.18151906 1.1549970 1
#> 10 2011 0.5071053 0.16159038 1.0281918 3
#> 11 2012 0.4008619 0.12773563 0.8127757 0
#> 12 2013 0.2644784 0.08427671 0.5362486 0
#> 13 2014 0.3662009 0.11669082 0.7424981 0
# }